Journal of Organometallic Chemistry, 121 (1976) 373–379 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE PREPARATION OF $NbH_5(Me_2PCH_2CH_2Me_2)_2$ AND $NbHL_2(Me_2PCH_2CH_2PMe_2)_2$ (L = CO OR C₂H₄)

RICHARD R. SCHROCK *

Central Research and Development Department **, E.I. du Pont de Nemours and Company, Wilmington, Delaware 19898 (U.S.A.)

(Received May 19th, 1976)

Summary

 $MMe_5(dmpe)$ (M = Nb or Ta, dmpe = $Me_2PCH_2CH_2PMe_2$) reacts with H_2 (500 atm) and dmpe in THF at 60° C to give $MH_5(dmpe)_2$. Nb $H_5(dmpe)_2$ readily reacts with two mol of CO or ethylene (L) to give Nb $HL_2(dmpe)_2$. The exchange of the hydride ligand with the ethylene protons in Nb $H(C_2H_4)_2(dmpe)_2$ is not rapid on the ¹H NMR time scale (60 MHz) at 95° C.

Introduction

Numerous polyhydride complexes of the type $MH_{x}L_{y}$ (L = a tertiary phos-. phine ligand) are known [1]. Two typical examples are $WH_{6}(PMe_{2}Ph)_{3}$ [2] and $IrH_{5}(PMe_{3})_{2}$ [3]. However, only one example is known where M is a metal from the Ti or V triads, $TaH_{5}(dmpe)_{2}$ [dmpe = $Me_{2}PCH_{2}CH_{2}PMe_{2}$] [4a]. It, and its analog, NbH₅(dmpe)₂, have now been prepared in good yield by cleaving the metal—carbon bond in MMe₅(dmpe) with H₂ in the presence of dmpe. This paper reports the details of the preparation of NbH₅(dmpe)₂, its characterization, and its reactions with CO or C₂H₄ (L) to give the derivatives, NbHL₂(dmpe)₂.

Results and discussion

The preparation of $MH_5(dmpe)_2$ (M = Nb, Ta)

TaMe₅ (dmpe) apparently does not react rapidly with H₂ at 1 atm pressure and 25°C. However, at 500 atm and 60°C in the presence of 1 mol of dmpe, TaMe₅(dmpe) in THF is transformed into TaH₅(dmpe)₂. It was identified by its characteristic ¹H NMR spectrum [4a]. A spectrum of the crude product showed evidence of no other non-volatile species.

- * Current address: Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
- ** Contribution No. 2378.

The reaction between NbMe₅(dmpe), H₂ (500 atm), and dmpe in THF at 60°C is entirely analogous. The resulting brownish-yellow solution probably contains a nearly quantitative yield of NbH₅(dmpe)₂ but since it slowly "decomposes" during workup (vide infra) the isolated yield of pure NbH₅(dmpe)₂ is only ca. 50%. A close examination of the reaction conditions showed that a large molar excess of H₂ at a high partial pressure is necessary to ensure complete reaction to NbH₅(dmpe)₂; in one instance the reaction (in 20 ml of THF) between 5.0 g of NbMe₅(dmpe), 2.5 g of dmpe, and 100 atm H₂ at 60°C for 16 h gave impure NbH₅(dmpe)₂ in low yield.

Several preparations of metal hydride complexes from alkyl or aryl complexes and H_2 have been reported in the literature [5]. In most cases a plausible mechanism consists of "oxidative addition" of H_2 to the metal followed by "reductive elimination" of the alkane, for example;

$$RhRL_3 \xrightarrow{H_2} RhRH_2L_3 \xrightarrow{-RH} RhHL_3$$

However, d° alkyl complexes cannot react with H₂ strictly in this manner because the metal is already in its highest formal oxidation state. Yet several (besides the MMe₅(dmpe) complexes described here) do, sometimes under fairly mild conditions. Three examples are $[TaPh_6]^- *$, $Ti(\eta^5-C_5H_5)_2Me_2$ [6] and $Zr(\eta^5-C_5H_5)_2Me_2$ [7]. One possible mechanism for the first step at least is analogous to the reaction of Group I and II organometallic compounds (e.g., LiC₆H₅) with H₂[8]. More complex mechanisms such as reaction of H₂ with a decomposition product, of course, cannot be excluded.

Characterization of $NbH_5(dmpe)_2$

NbH₅(dmpe)₂ is a pale yellow, waxy, crystalline solid which is stable under N₂ for at least several days at 25°C. It readily dissolves in pentane from which it can be recrystallized at -30° C in ca. 80% yield. Treatment (in toluene) with 5.7 mol of gaseous HCl for 16 h gave 5.0 mol of H₂. Using 10 mol of DCl, 4.7 mol of a mixture of 26% H₂, 47% HD, and 27% D₂ evolved. Its infrared spectrum shows a strong, broad resonance at ca. 1520 cm⁻¹ (in Nujol) which can be assigned to ν (M—H).

The ¹H NMR spectrum of NbH₅(dmpe)₂ in C₆D₆ at 25°C consists of a quintet at τ 12.04 (²J(HP) = 39 Hz) and a broad resonance for the dmpe protons (CH₃ and CH₂ combined) at τ 8.57 ppm. The relative areas as 5 ± 0.5 : 32. The fact that the the hydride resonance is a quintet confirms that the hydride ligands are coupled to four phosphorus nuclei which are equivalent on the ¹H NMR time scale at 25°C. The ¹H NMR spectrum at --80°C in toluene-d₈ is virtually identical.

The ³¹P{¹H} NMR spectrum in toluene at -80° C shows a single resonance 39.5 ppm below external 85% H₃PO₄. The half-height width at this temperature is ca. 10 Hz. At 0°C this resonance is considerably broader (ca. 90 Hz) due to coupling of ³¹P to ⁹³Nb (100% abundant, I = 9/2). Loss of H₂ or one end of a dmpe ligand is probably not responsible for the broadening since the hydride resonance in the ¹H NMR spectrum is a sharp quintet at both -80° C at 25°C.

^{*} The reaction of {Li(THF)₄}⁺[TaPh₆]⁻ (U. Klabunde, manuscript in preparation) and H₂ (1500 psi) in THF in the presence of dmpe at 45°C for 5 h was the original preparation of TaH₅(dmpe)₂ developed by Tebbe [4a].

Also note that the ³¹P resonance in the ³¹P{¹H}NMR spectrum of TaH₅(dmpe)₂ [4a] does not broaden in this manner, in part, at least, because the electric quadrupole moment for Ta is relatively large *. Selective decoupling of the dmpe protons at -80° C gave a poorly resolved binomial sextet in the ³¹P spectrum (²J(PH) \approx 32 Hz; cf. ²J(HP) above), consistent with the presence of five hydride ligands.

Both 'H NMR and ³¹P NMR spectra suggest that the barrier to interconversion of idealized structures for $NbH_s(dmpe)_2$ in solution is low. In fact, no polyhydride complexes which are at least seven-coordinate show a preferred geometry in solution under conditions which are normally accessible in a low temperature NMR experiment [1].

When a pentane or hexane solution of NbH₅(dmpe)₂ stands (under N₂) at 25° C for several days, greenish-brown microcrystals slowly form. The ${}^{31}P{}^{1}H{}NMR$ spectrum of this apparent decomposition product shows at least four approximately equally intense resonances while its ¹H NMR spectrum still shows a weak quintet hydride resonance which is, however, shifted 1-2 ppm to higher field than observed in $NbH_{5}(dmpe)_{2}$. In one instance this material could not be cleanly transformed into $NbH_{s}(dmpe)_{2}$ under the conditions used for its preparation (500 atm H_2 at 60°C in THF). These results auger against the proposition that $NbH_{5}(dmpe)_{2}$ spontaneously and reversibly loses 1 or 2 mol of H₂ under molecular nitrogen to give stable $NbH_1(dmpe)_2$ or $NbH(dmpe)_2$. In the presence of typical π -acid ligands such as CO or ethylene, however, 2 mol of H₂ evolve briskly (vide infra). In contrast, $TaH_5(dmpe)_2$ is comparatively stable toward loss of H_2 , even in the presence of CO or C_2H_4 [4b]. The comparative "lability" of complexes of second row metals vs. those of third row metals is, of course, a well-recognized phenomenon not only for polyhydride species [1] but for many other types of complexes throughout the transition series.

The reaction of $NbH_5(dmpe)_2$ with CO

NbH₅(dmpe)₂ in pentane reacts with CO (30 psi) at 25°C to give an orange solution from which orange needles crystallize at -30°C. An infrared spectrum (Nujol) shows a weak to medium band at 1550 cm⁻¹ and a strong band at 1700–1750 cm⁻¹, consistent with ν (M–H) and ν (C=O) modes, respectively.

The ¹H NMR spectrum of NbH(CO)₂ (dmpe)₂ in C₆D₆ at 25° C shows a triplet of triplets at τ 14.46 (²J(HP) = 92 Hz, ²J(HP') = 14 Hz) and two poorly resolved doublets due to two types of dmpe methyl groups. Its ³¹P NMR spectrum at -80° C (undecoupled) consists of a broad doublet 49 ppm downfield from external 85% H₃PO₄ (²J(PH) \approx 89 Hz; cf. ²J(HP) = 92 Hz above) and a broad singlet at 27 ppm. On decoupling all protons, the two ³¹P resonances collapse to two identical non-first-order doublets (²J(PP') \approx 25 Hz). These findings are analogous to those for TaH(CO)₂(dmpe)₂ [4,10]. Furthermore, X-ray examination of a single crystal [11] showed that NbH(CO)₂(dmpe)₂ and TaH(CO)₂(dmpe)₂ are indeed isomorphous and, therefore, presumably isostructural.

The reaction of $NbH_5(dmpe)_2$ with ethylene

The reaction of 1.0 mmol of $NbH_5(dmpe)_2$ in 10 ml of pentane with 4.0 mmol

^{*} See ref. 9 for a discussion of proton coupling to 51 V in V(η^{7} -C₇H₇)(CO)₃.

376

of C_2H_4 (ca. 1 atm) at 25°C for 16 h gave 1.8 mol of H_2 , a trace of ethane, and a yellow solution from which yellow crystals of what is postulated to be NbH(C_2H_4)₂(dmpe)₂ could be isolated at -30° C. The remaining ethylene, 2.0 mmol, was likewise measured by Toepler pump techniques and identified by mass spectroscopy. An identical reaction between 1.0 mmol of NbH₅(dmpe)₂ and 6 mmol of C_2D_4 gave 1.8 mmol of a mixture of 21% H₂, 44% HD, and 35% D₂ and yellow crystals of "NbH(C_2D_4)₂(dmpe)₂". Though transition metal complexes containing both a hydride ligand and a coordinated olefin are rare, the experimental evidence below clearly supports the NbH(C_2H_4)₂(dmpe)₂ formulation.

The infrared spectrum (in Nujol) of NbH(C₂H₄)₂(dmpe)₂ shows a weak absorption at 1550 cm⁻¹, almost identical to that found in the spectrum of NbH(CO)₂ (dmpe)₂. A shoulder at 3020 cm⁻¹ is consistent with an olefinic ν (CH) stretching mode. The infrared spectrum of "NbH(C₂D₄)₂(dmpe)₂" shows a weaker ν (MH) absorption at 1550 cm⁻¹ and a pattern of four peaks at ca. 2290, 2220, 2200, and 2170 cm⁻¹ (relatively, strong, weak, medium, strong) due to wholly or partially deuterated coordinated ethylene. No shoulder at 3020 cm⁻¹ was visible.

The ¹H NMR spectrum of NbH $(C_2H_4)_2$ (dmpe)₂ in C₆D₆ shows a hydride resonance at τ 12.94 (a poor triple triplet with ²J(HP') \approx 21 and ²J(HP) \approx 102 Hz, cf. the hydride resonance in the 'H NMR spectrum of NbH(CO)₂(dmpe)₂ above), two doublets (τ 8.47 and 8.81; $J(CH_3P) = 6$ and 4 Hz, respectively) and two poorly resolved triplets (τ 9.06 and 9.66, $J(CH_3P) \approx 3$ and 2 Hz, respectively) assigned to dmpe methyl groups, and a broad peak (ca. 15 Hz wide) at au 10.82 which integrates as 2 protons vs. the single hydride. The dmpe CH₂ resonances propably lie under the dmpe CH_3 resonances. Apparently the remaining six ethylene proton resonances are masked by the dmpe CH₃ and CH₂ resonances since the total relative intensity in the dmpe region is 38. The 'H NMR spectrum of "NbH(C_2D_4)₂(dmpe)₂" confirms this postulate. Not only are the hydride and au 10.82 ethylene proton peaks very weak but much intensity is lost from under the dmpe methyl resonances, most clearly at ca. τ 9.7 where a broad peak similar to that at τ 10.82 lies under the τ 9.66 dmpe methyl triplet in the spectrum of $NbH(C_2H_4)_2(dmpe)_2$. These results also suggest that hydrogen atoms have been incorporated into coordinated C_2D_4 , consistent with finding an $H_2/HD/D_2$ mixture above the solution after reaction of C_2D_4 with NbH₅(dmpe)₂ (vide supra).

The ³¹P NMR spectrum of NbH(C₂H₄)₂(dmpe)₂ is also similar to that of NbH(CO)₂(dmpe)₂. The undecoupled spectrum consists of a broad peak at 48 ppm and a poorly resolved doublet at 10 ppm (²J(PH) \approx 95 Hz; cf. ²J(HP) \approx 102 above) downfield of 85% external H₃PO₄. On decoupling all protons the upper peak becomes a triplet (J = 18 Hz) and the lower peak sharpens somewhat and shows some structure but is still rather broad. That two doublets are not obtained, as in the case of NbH(CO)₂(dmpe)₂, is probably due to lower symmetry in NbH(C₂H₄)₂(dmpe)₂, which makes all P nuclei, and at least four of the eight dmpe methyl groups (see ¹H NMR results above) nonequivalent. However, the P nuclei are found in basically two magnetic environments according to the ³¹P chemical shifts; the triple triplet pattern for the hydride resonance supports this postulate.

Comparison of the ${}^{13}C{}^{1}H{}NMR$ spectrum of NbH(C₂H₄)₂(dmpe)₂ with that of "NbH(C₂D₄)₂(dmpe)₂" allows one to assign the resonances due to coordinated

ethylene since the Overhauser enhancement is slight when an ethylene ¹³C atom has D instead of H attached. Two peaks 35 and 32 ppm downfield from TMS in toluene- d_8 are as intense as the other major ¹³C resonances in the spectrum of NbH(C₂H₄)₂(dmpe)₂. They are essentially absent in the ¹³C{¹H} spectrum of "NbH(C₂D₄)₂(dmpe)₂" (other peaks are unchanged) and can therefore be assigned to roughly two types of carbon atoms in the coordinated ethylenes.

Though these data do not prove the NbH(C_2H_4)₂(dmpe)₂ formulation, they do support it strongly. The formulation seems especially reasonable in view of the suggested formation of the isoelectronic species, [MoH(C_2H_4)₂(diphos)₂]⁺ (diphos = Ph₂PCH₂CH₂PPh₂), by protonation of Mo(C_2H_4)₂(diphos)₂ [12]. Based on the ¹H, ³¹P, and ¹³C NMR data above, a reasonable gross structure for NbH (C_2H_4)₂(dmpe)₂ would be analogous to that of TaH(CO)₂(dmpe)₂. The apparent lower symmetry of NbH(C_2H_4)₂(dmpe)₂ vs. NbH(CO)₂(dmpe)₂ could be ascribed to the fact that C_2H_4 is sterically more demanding than CO and not cylindrically symmetric about the bond to Nb. Thus an idealized molecular geometry is less favorable.

The exchange of the hydride ligand with ethylene protons in $NbH(C_2H_4)_2(dmpe)_2$

None of the NMR data (including the ${}^{13}C{{}^{1}H}$ NMR data) suggests that any significant amount of D from C_2D_4 is incorporated into the dmpe ligands under the fairly mild conditions employed in preparation of "NbH $(C_2D_4)_2(dmpe)_2$ ". On the other hand, Nb—H does scramble to some extent with D in C_2D_4 during preparation of "NbH $(C_2D_4)_2(dmpe)_2$ " judging from the 57% D present as HD and D_2 in the 2 mol of evolved gas (vide supra).

A rough estimate of the rate of the hydride/ethylene exchange can be made based on the fact that the spectrum of a sample of NbH(C_2H_4)₂(dmpe)₂ in toluene- d_8 at 95°C (60 MHz) is identical to the spectrum at 25°C. In particular the hydride triple triplet resonance at τ 12.94 remains distinct and shows no broadening characteristic of the onset of exchange with ethylene protons. This behavior contrasts markedly with that observed for [MoH(C_2H_4)₂(diphos)₂]⁺ in CD₂Cl₂ where four protons on one of the ethylene ligands equilibrate with the hydride ligand rapidly on the ¹H NMR time scale (100 MHz) at +7°C by a postulated reversible formation of an ethyl ligand [12]. These data therefore confirm that the rate of exchange in NbH(C_2H_4)₂(dmpe)₂ is considerably slower. Though NbH(C_2H_4)₂(dmpe)₂ differs from isoelectronic [MoH(C_2H_4)₂(diphos)₂]⁺ in several obvious ways (and perhaps structurally as well), it is not obvious why the hydride in the former should be so much more reluctant to transfer to ethylene.

Experimental

All operations were done under nitrogen, either in standard glassware or in a Vacuum Atmospheres HE43-2 drybox. Nb(CH₃)₅(dmpe) and Ta(CH₃)₅(dmpe) were prepared as previously reported [13]. Reactions in which H₂ or C₂H₄ uptake or evolution was to be measured were done in sealed vials to which a break-seal was attached. Hydrogen was measured quantitatively by Toepler pump techniques after passing the gas through a liquid nitrogen trap. Ethylene was similarly measured after warming the trap to -78° C (acetone/dry ice). Each was identified by mass spectroscopy. Elemental C and H analyses were done at the Central Research and Development Department.

Preparation of TaH_5(dmpe)_2

A mixture of 1.5 g of $Ta(CH_3)_5(dmpe)$ and 0.60 g of dmpe in 4 ml of THF was shaken under 500 atm of H_2 in a 10 ml stainless steel bomb at 60°C for 16 h. Removal of the THF in vacuo left 0.6 g of white $TaH_5(dmpe)_2$ (some was lost during the isolation procedure). Its IR and ¹H NMR spectra were identical to those reported [4a].

Preparation of $NbH_5(dmpe)_2$

A mixture of 15.7 g of Nb(CH₃)₅(dmpe) and 7.5 g of dmpe in 200 ml of THF were drawn into an evacuated 400 ml bomb which was then pressurized to 500 atm with H₂, heated to 60°C and rocked for 16 h. The bomb was bled till only a few atmospheres pressure remained and then inverted. The brownish-yellow solution was then blown out carefully into a nitrogen-filled flask. The THF was removed in vacuo and the residue was dissolved in 200 ml of pentane. The solution was treated with dry activated charcoal, filtered, and stood at -30° C overnight to give 11.2 g of yellow, waxy NbH₅(dmpe)₂. An additional 1.0 g was isolated similarly after removing 150 ml of pentane in vacuo; total crude yield 12.2 g (62%). The crude product was dissolved in 125 ml of pentane, treated with charcoal, etc., and stood at -30° C overnight to give 9.5 g of pure, pale yellow NbH₅(dmpe)₂.

Found: C, 36.01; H, 9.30. NbC₁₂H₃₇P₄ calcd.: C, 36.20; H, 9.36%. The hydride quintet resonance in the ¹H NMR spectrum confirms the presence of four phosphorus atoms (see text).

Preparation of $NbH(CO)_2(dmpe)_2$

A solution of 0.79 g NbH₅(dmpe)₂ in 10 ml of pentane was placed in a 300 ml pressure bottle. The bottle was flushed twice with CO, then pressurized to 30 psi. After stirring for 16 h, the pressure was relieved and ca. 20 ml of hexane added to dissolve the orange solid. The solution was filtered through a fine glass frit to remove the haze. Long orange needles crystallized in the filtrate on standing at -30° C overnight; yield 0.70 g (79%).

Found: C, 37.35, H, 7.39. NbC₁₄H₃₃P₄O₂ calcd.: C, 37.36; H, 7.38%. The determination by X-rays that NbH(CO)₂(dmpe)₂ is isomorphous with TaH(CO)₂ (dmpe)₂ is conclusive support for its formulation.

Preparation of $NbH(C_2H_4)_2(dmpe)_2$

A procedure analogous to the above using 1.50 g NbH₅(dmpe)₂ under 30 psi of C_2H_4 gave 1.44 g of pale yellow NbH(C_2H_4)₂(dmpe)₂ (83% yield).

Found: C, 42.48; H, 9.19. NbC₁₆H₄₁P₄ calcd.: C, 42.69; 9.17%.

References

- 1 Transition Metal Hydrides, E.L. Muetterties, (Ed.), Marcel Dekker, Inc., New York, 1971.
- 2 J.R. Moss and B.L. Shaw, Chem. Commun., (1968) 632.

3 E.K. Barefield, Inorg. Syn., 15 (1974) 34.

- 4 (a) F.N. Tebbe, J. Amer. Chem. Soc., 95 (1973) 5823; (b) F.N. Tebbe, unpublished observations.
- 5 Transition Metal Hydrides, E.L. Muetterties, (Ed.), Marcel Dekker, Inc., New York, 1971, p. 213.
- 6 K. Clauss and H. Bestian, Ann. Chem., 654 (1962) 8.
- 7 P.C. Wailes, H. Weigold and A.P. Bell, J. Organometal. Chem., 34 (1972) 155.

8 H. Gilman, A.L. Jacoby and H. Ludeman, J. Amer. Chem. Soc., 60 (1938) 2336.

9 G.M. Whitesides and H.L. Mitchell, J. Amer. Chem. Soc., 91 (1969) 2245.

10 P. Meakin, L.J. Guggenberger, F.N. Tebbe and J.P. Jesson, Inorg. Chem., 13 (1974) 1025.

11 L.J. Guggenberger, Central Research and Development Department.

12 J.W. Byrne, H.U. Blaser and J.A. Osborn, J. Amer. Chem. Soc., 97 (1975) 3871.

13 R.R. Schrock and P. Meakin, J. Amer. Chem. Soc., 96 (1974) 5288.